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ReportMultisensory Integration of
Looming Signals by Rhesus Monkeys

nant cue (Rosenblum et al., 1987). Indeed, adult and
infant humans and rhesus monkeys have a strong per-
ceptual bias toward rising- versus falling-intensity sig-
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hoff, 1998; Stecker and Hafter, 2000). Taken together,Germany
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Wooster, Ohio 44691 for perceiving looming sources.

Although many animals evolved parallel warning sys-
tems to escape undesirable encounters when one sen-
sory modality failed (such as vision in dark environ-

Summary ments), parallel sensory systems also confer enormous
benefits when used in conjunction. The integration of

Looming objects produce ecologically important sig- multimodal signals enhances detection, discrimination,
nals that can be perceived in both the visual and audi- and learning of events across many different species
tory domains. Using a preferential looking technique (see Rowe, 1999, for review). Moreover, increases in
with looming and receding visual and auditory stimuli, bimodal localization performance with spatially coinci-
we examined the multisensory integration of looming dent auditory and visual stimuli are multiplicative and
stimuli by rhesus monkeys. We found a strong atten- exceed what would be predicted by performance in ei-
tional preference for coincident visual and auditory ther modality alone, suggesting a true interaction of vi-
looming but no analogous preference for coincident sion and audition (Stein et al., 1989).
stimulus recession. Consistent with previous findings, It is unknown whether animals understand that signals
the effect occurred only with tonal stimuli and not from two modalities signify the same event and if so
with broadband noise. The results suggest an evolved whether this ability is experience dependent. Our study,
capacity to integrate multisensory looming objects. therefore, addressed the following question: can ani-

mals integrate the auditory and visual components of
an artificial looming source into a unified percept? Using

Introduction the preferential looking method with rhesus monkeys
as subjects, we investigated whether videos of a rapidly

The world is full of potentially dangerous approaching expanding (looming) and a rapidly contracting (receding)
objects. These include predators, competitors, and abi- disk could be matched with a rising (looming) or falling
otic sources. For our ancestors in the primate lineage, (receding) intensity complex tone. The artificiality of the
a raptor’s stoop or pursuit by a dominant individual stimuli and their conjunction preclude the subjects’ prior
were clear and present dangers of everyday life. Such experience as a factor, yet the stimuli retain the general
dangers remain for extant primates living in the wild fundamental features of looming/receding objects.
(Gil-da-Costa et al., 2003; Kitchen et al., 2003). To sur-
vive in such a world, animals must escape or avoid such

Resultsdynamic sources of danger by rapidly detecting and
responding to the signals that specify such looming

We adopted the “preferential looking” technique, usedevents. Because of their rapid transmission in the envi-
by cognitive scientists to test intermodal perception inronment, visual and auditory signals can each indepen-
prelinguistic infants (e.g., Spelke et al., 1983), to investi-dently be a reliable cue to fast approaching sources.
gate the natural capacity of rhesus monkeys to matchIn the visual domain, many animals (including humans)
visual looming cues with auditory looming cues. In thisproduce adaptive avoidance responses to both real and
paradigm, subjects were seated in front of two LCDsimulated looming cues (Ball and Tronick, 1971; Schiff
monitors where one monitor displayed a video of anet al., 1962; Schiff, 1965; Tinbergen, 1951). For example,
expanding disk (the looming stimulus) while the othera rapidly expanding circular shadow elicits fear re-
monitor displayed a contracting disk (the receding stim-sponses in adult and infant rhesus monkeys (Schiff et
ulus; Figure 1A). A rising- or falling-intensity complexal., 1962) and human infants (Ball and Tronick, 1971),
tone (fundamental frequency: 400 Hz; 20 dB intensitybut rapidly contracting shadows do not. Studies in the
change; Figure 1B) was played through a hidden loud-auditory domain also suggest a perceptual bias for
speaker placed between the two monitors. All videossound sources that are looming. When human listeners
and sounds were 1 s in duration, and the two videosare asked to predict the arrival time of a moving sound
and the sound were synchronized (see Experimentalsource, they repeatedly err on the side of safety, ex-
Procedures); these stimuli were played in repetition forpecting contact before the source actually arrives (Ro-
30 s. The subjects were not rewarded in any way forsenblum et al., 1993; Schiff and Oldak, 1990). For such
their performance during testing. The dependent mea-looming sound sources, intensity change is the domi-
sure was percentage of total looking time to the match-
ing video.

In condition 1, rhesus monkey subjects (n � 9) were*Correspondence: asifg@tuebingen.mpg.de
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Figure 3. Percentage of Looking Time at the Matching Stimulus
Presented with a Rising-Intensity White Noise Stimulus

(A) Spectrogram and time-amplitude waveform of the rising-inten-
sity white noise stimulus.
(B) Mean percentage of total looking time at the matching looming
stimulus in condition 3.

stimulus, independent of the sound that they heard. In
Figure 1. Multimodal Looming and Receding Stimuli condition 2, therefore, a new set of subjects (n � 16)
(A) Visual stimuli. A black disk symmetrically expanding (looming was tested with the same visual stimuli but with the
stimulus) or contracting (receding stimulus) on a white background. receding sound stimulus. If sound has no influence on
Stimuli expanded/contracted over the stimulus duration of 1 s. the preferential looking, then we would expect that the(B) Auditory stimuli. Spectrograms and time-amplitude waveforms

monkeys would continue to prefer to look at the loomingof the rising-intensity (looming) and falling-intensity (receding) com-
video. In contrast, if the sound does have an influenceplex tones (based on a 400 Hz triangular waveform).
on looming perception, then in this condition they could
either show a preference toward the receding video or

presented with the two dynamic visual stimuli and heard show no preference at all. Our data support the latter
the looming version of the complex tone (rising in inten- hypothesis. Rhesus monkeys showed no preferential
sity from 55 to 75 dB). They looked significantly longer looking toward the receding video (4.62 � 0.50 s) versus
at the matching, looming video than at the receding the looming video (4.09 � 0.49 s) when they heard the
video. The mean looking time toward the looming video receding sound stimulus. The mean percentage of total
was 8.73 � 0.89 s (68% of the total looking time) versus looking time to the matching, receding video was 53%
4.22 � 0.66 s toward the receding video. This is signifi- (t[15] � 1.09, p � 0.292; Figure 2B), and the proportion
cantly above chance level (t[8] � 5.76, p � 0.0001; Figure of subjects looking longer overall toward the receding
2A). Furthermore, 9 out of 9 subjects looked longer at video was also not significant (sign test, p � 0.105).
the looming visual stimulus (sign test, p � 0.002). Thus, despite the fact that duration, spectral content,

It is possible that rhesus monkeys simply found the and overall intensity change were identical between the
looming visual stimulus more salient than the receding looming and receding sound stimuli, only the looming

sound biased the viewing behavior of rhesus monkeys
toward the looming visual stimulus.

In humans and monkeys, the strong perceptual bias
for looming sounds is specific for harmonically struc-
tured tonal sounds and is weakened or eliminated when
broadband noise (unstructured) sounds are heard (Gha-
zanfar et al., 2002; Neuhoff, 1998). In condition 3, we
investigated whether the influence of looming sounds
on the looking preferences of rhesus monkeys toward
the looming video was stimulus specific. We replaced
the complex tone used in condition 1 with white noise,
but with an identical rising intensity change (from 55 dB
to 75 dB; Figure 3A). Under these conditions, subjects
did not show any preference for the looming visual stim-
ulus. Fifty-three percent of the total looking time was
toward the matching, looming video (n � 8; t[7] � 0.421,Figure 2. Percentage of Looking Time at the Matching Stimulus
p � 0.686; Figure 3B), and the proportion of animalsPresented with Rising- and Falling-Intensity Complex Tone Stimuli
looking longer toward the match was also not significantMean percentage of total looking time at the (A) looming and (B)

receding stimulus in condition 1 and 2, respectively. (sign test, p � 0.363). Mean looking time at the looming
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stimulus was 6.30 � 1.75 s versus 4.47 � 0.67 s for the Andrews, 1994, for review). For example, the sight and
receding visual stimulus. These data demonstrate that sound of a bouncing ball can indicate that the visual
the ability to integrate auditory and visual looming sig- and auditory events come from the same source, and the
nals is dependent on the spectral characteristics of the amodal information separates them from co-occurring
looming sound. events that do not share the same temporal structure.

The multisensory integration of looming signals shown
by rhesus monkeys cannot be based on amodal equiva-Discussion
lency because temporal cues such as duration and syn-
chrony were present for both visual signals and theThe present study demonstrates the capacity for multi-

sensory integration of looming but not receding signals looming sound.
in a nonhuman animal. This matching ability is due solely In the case of unimodal looming signals, there is
to the salience of symmetrically expanding visual signals strong evidence that the perceptual bias is an evolved
combined with the rising intensity of structured sounds; trait (Neuhoff, 2001; Ghazanfar et al., 2002; Schiff et al.,
temporal cues (such as duration) and spatial cues could 1962; Schiff, 1965). In the present case, our monkey
not have been used to make the match (as the visual subjects had no prior experience with computer-gener-
signals were displaced from the auditory signal). These ated expanding disks, with rising intensity complex
findings suggest that rhesus monkeys (and likely other tones, or their association. The synchrony and duration
animals, including humans) have evolved perceptual provided amodal cues, but the receding disk was a con-
mechanisms to detect bimodally specified rapidly ap- flicting signal and the integration was spectrally depen-
proaching objects. dent. The monkey subjects, therefore, made an arbitrary

For the looming condition, the magnitude of the be- association of visual expansion with a rising-intensity
havioral bias is very large: 9 out of 9 subjects demon- tone that was immediately salient. This suggests that
strated the effect and their percentage of total looking monkeys (and likely humans and other animals) have an
time to the match screen was also highly significant evolved capacity to integrate bimodal looming signals,
(68% versus chance at 50%). The magnitude of our statisti- but whether this capacity manifests itself innately or
cal effects is similar to those reported in preferential look- requires experience is not known. Regardless, they are
ing studies of human infants. For instance, for infant stud- able to extract the relevant looming cues independent of
ies of crossmodal perception, Walker-Andrews and the unique features of an arbitrary approaching object.
Lennon (1985) reported 60% looking time to the match Our understanding of the neuroanatomical and neuro-
screen in a crossmodal distance perception study and physiological bases for sensory convergence has ad-
Kuhl and Meltzoff (1982) reported 73% looking time to vanced much more rapidly than our understanding of
the matching screen in a crossmodal speech perception the role of polysensory areas in behavior (see Ettlinger
study. The present results are also consistent with a and Wilson, 1990, for review). For natural, behaviorally
previous study of face-voice integration by monkeys relevant multimodal signals, virtually nothing is known
in our lab using the same technique (Ghazanfar and

about the neural level integration. For visual looming,
Logothetis, 2003). Indeed, the results of the monkey

many taxa show similar avoidance responses (Schiff,
studies are actually more robust than the infant studies

1965), but the neural architecture that underlies this be-
because we obtain a highly significant statistical out-

havior may be vastly different. In monkeys, a large pro-come with far fewer subjects. The results for the reced-
portion of neurons in the upper bank of the superioring and white noise conditions were similarly very robust
temporal sulcus (STS) have a strong bias toward loom-in favoring the null statistical hypothesis of no preferen-
ing visual motion signals (Anderson and Siegel, 1999;tial looking to either screen.
Hietanen and Perrett, 1996; Mistlin and Perrett, 1990).Multisensory looming integration was dependent on
For auditory signals, the human STS is more responsivethe spectral structure of the rising intensity sound. White
to looming signals than to receding or static soundsnoise of identical duration and intensity change failed
(Seifritz et al., 2002). Taken together with the knownto elicit integration. This is consistent with previous audi-
polysensory properties of STS (Desimone and Gross,tory looming studies (Ashmead et al., 1995; Neuhoff,
1979; Bruce et al., 1981; Hikosaka et al., 1988), these1998, 2001). Tonal sounds are generally more meaning-
studies suggest that the STS is likely a site for the neuralful than noise because their ordered harmonics undergo
integration of multimodal looming signals. The ventralcorrelated changes in intensity and can provide informa-
intraparietal area (VIP) of the posterior parietal cortextion about the nature and location of the source, whereas
may be another possible site of integration. VIP also hasthe uncorrelated changes present in the components of
a representational bias for expanding optic flow stimulinoise do not provide such information (Bregman, 1990).
(Bremmer et al., 2002), and VIP neurons are often poly-Under natural conditions, tonal sounds are much more
sensory, responding to visual, tactile, and auditory stim-reliable markers for ecologically important individual
uli (Colby et al., 1993; Bremmer et al., 2001). Further-sound sources than broadband noise (Neuhoff, 2001).
more, a recent study revealed that microstimulation ofSensory information from different modalities can be
VIP elicits defensive movements (Cooke et al., 2003),transmitted in one of two ways: it can specify the identi-
a feature compatible with a putative role in loomingcal stimulus property and thus be amodal, or each mod-
processing. Together, the polysensory properties of STSality can have unique features that together then form
and VIP and their sensitivity to looming signals stronglyspecific arbitrary relations. Amodal equivalence is usu-
suggest them as candidate sites for the neuronal inte-ally temporally specified along such stimulus character-

istics as duration, rhythm, and/or intensity (see Walker- gration of bimodal looming signals.
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Experimental Procedures looking toward the right screen, the left screen, or away from both.
The total duration of a subject’s looking toward each video (left
or right) or away from both was recorded and expressed as theSubjects

We tested male rhesus macaques (age range: 4–12 years) who are proportion of total looking time.
Scoring which of the screens the monkey subjects were lookingpart of a large colony housed at the Max Planck Institute for Biologi-

cal Cybernetics. All animals are socially housed and provided with toward was absolutely unambiguous. The screens are far apart in
the horizontal dimension, fairly close to the monkey’s face, and atenrichment (toys, hammocks, ropes, etc.). All experimental proce-

dures were in accordance with the local authorities (Regierung- eye level. Thus, the monkey has to make large eye movements/
head movements to look to one screen or the other, and it is similarlyspraesidium) and the European Community (EUVD 86/609/EEC) for

the care and use of laboratory animals. clear when he is not looking at either screen. To validate this, we
measured interobserver reliability. The mean difference in the per-
cent fixation scores was 1.0%. Observer agreement was 0.985 (p �Stimuli
0.0001) as measured by a Pearson r test.Visual stimuli were generated in Matlab (www.mathworks.com), us-

ing the Psychophysics Toolbox extensions (www.psychtoolbox.org;
AcknowledgmentsBrainard, 1997). The visual looming stimulus consisted of a black

disk symmetrically expanding (ranging from 0.68 degrees [fully con-
We are very grateful for the assistance of Joachim Werner for settingtracted] to 9.94 degrees [fully expanded] eccentricity) on a white
up the computer system for synchronized playback of parallel audio-background. The receding stimulus was a black disk symmetrically
visual stimuli; and to Kari Hoffman for her constructive commentscontracting (same dimensions as the looming stimulus) on a white
during the study. This work was supported by the Max Planck So-background. Visual stimuli expanded or contracted over a 1 s dura-
ciety.tion. Auditory stimuli were 400 Hz complex tones composed of a

triangular waveform and generated in Cool Edit Pro software (Syntril-
Received: April 26, 2004lium Software Corp., www.syntrillium.com). The tones were 1 s in
Revised: June 11, 2004duration and either rose in intensity from 55 to 75 dB (looming
Accepted: June 25, 2004stimulus) or fell from 75 to 55 dB (receding stimulus). They were
Published: July 21, 2004sampled at 44.1 kHz, had 10 ms onset and offset ramps, and

changed 20 dB in intensity from start to end. A white noise stimulus
with identical intensity and temporal characteristics as the looming References
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